Table of Contents

1. General .. 1
2. Contact .. 3
3. Standards and Methodologies to Follow ... 3
4. AutoCAD Symbols .. 4
5. Telecommunication Room (TR) Design ... 4
6. Outside Plant Pathway Design .. 8
7. Intrabuilding Backbone (Riser) Pathway Design .. 8
8. Telecommunications Workstation Pathway Design .. 10
9. Outside Plant Cabling .. 13
10. Intrabuilding Backbone (Riser) Distribution Cabling ... 14
11. Horizontal Distribution Cabling .. 15
12. Termination .. 25
13. Cross-connections ... 26
14. Labeling ... 28
15. Telecommunications Grounding and Bonding ... 29
16. Inspections, Testing, and Acceptance ... 30
List of Revisions

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev 01.00</td>
<td>Initial document for CCCCD review</td>
<td>March 25, 2009</td>
</tr>
<tr>
<td>Rev 01.01</td>
<td>Adjustments by WTC for team review</td>
<td>April 27, 2009</td>
</tr>
<tr>
<td>Rev 01.02</td>
<td>Adjustments by WTC after Architect’s Review</td>
<td>April 30, 2009</td>
</tr>
<tr>
<td>Rev 01.03</td>
<td>Adjustments by WTC after CCCCD Review</td>
<td>May 9, 2009</td>
</tr>
<tr>
<td>Rev 01.04</td>
<td>Adjustments by KMO after DVC Input</td>
<td>May 29, 2009</td>
</tr>
<tr>
<td>Rev 01.05</td>
<td>Adjustments by KMO adding to attachment 3</td>
<td>July 13, 2010</td>
</tr>
<tr>
<td>Rev 02.00</td>
<td>Adjustments by KMO after construction reviews</td>
<td>January 31, 2011</td>
</tr>
<tr>
<td>Rev 02.10</td>
<td>Adjustments by KMO after architect reviews</td>
<td>June, 2011</td>
</tr>
<tr>
<td>Rev 02.20</td>
<td>Adjustments by KMO after use</td>
<td>November, 2014</td>
</tr>
<tr>
<td>Rev 02.30</td>
<td>Adjustments by KMO after use</td>
<td>January, 2016</td>
</tr>
<tr>
<td>Rev 02.40</td>
<td>Adjustments by KMO after use</td>
<td>March, 2016</td>
</tr>
</tbody>
</table>
List of Attachments

<table>
<thead>
<tr>
<th>Attachment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attachment I</td>
<td>Glossary of Terms</td>
</tr>
<tr>
<td>Attachment II</td>
<td>Division 27 Specification Section Highlights</td>
</tr>
<tr>
<td>Attachment III</td>
<td>Site Specific Specifications (in progress)</td>
</tr>
<tr>
<td>Attachment IV</td>
<td>AutoCAD Symbols</td>
</tr>
<tr>
<td>Attachment V</td>
<td>District Specified Equipment List</td>
</tr>
</tbody>
</table>
1. General

This document is intended to guide the engineering, design, and installation of voice and data infrastructure throughout the Contra Costa Community College District (CCCCD). The document should be used to guide the installation of cable and infrastructure additions/remodels as well as the engineering and design of new construction.

KEY POINTS FOR ARCHITECTS, FACILITY PLANNERS AND ENGINEERS

1.1. Initial building modeling shall accommodate space planning for telecommunication space footprints, power requirements, riser pathway and media systems and adequate heat dissipation.

1.2. Facilities shall be designed to support standards-based infrastructure solutions providing long-term flexibility.

1.3. Designs in support of a specific technology shall be avoided. For the LMC Campus only, where ADC Krone is currently in use and only some of the wiring will be replaced, ADC Krone will continue to be used.

1.4. Telecommunication Rooms (TR) shall be dedicated to the support of telecommunications systems only.

1.5. Any telecommunications space housing or expected to house electronic equipment shall be designed with 24 hour a day/365 days a year environmental services configured for the specific campus conditions.

1.6. Each project shall have a specific telecommunications pathway prepared from the point of network origination on campus into and throughout the facility. Outside Plant (OSP) pathways planning is critical to the project. Fill ratios of conduits shall not exceed 40% fill or exceed minimum bend radius.

1.7. All instructional areas shall be designed to support the distribution of technology for faculty, staff, and students and the use of multi-media systems.

1.8. High technology spaces should be designed with flexible access flooring and/or telecommunications pathways built in to support flexibility in use.

1.9. When updating the infrastructure in renovation projects, the designer shall be aware of the limitations imposed by older electrical and HVAC systems,
outdated ceiling systems, existing wiring methods, and hazardous materials.

1.10. Telecommunications pathways shall be designed as a specific part of an overall telecommunications infrastructure plan, not as a system or technology-specific component.

1.11. All telecommunications related infrastructure issues shall be based upon published industry standards such as the TIA/EIA series and RUS bulletins. Vendor-specific requirements shall be analyzed and approved by designated IT representative in light of an overall “standards based” approach.

1.12. The District has selected Category 6A as our cable standard for new construction and where complete building remodels make it possible to scale up the conduit and ladder racking. Where Category 5 or 5E is being replaced Category 6A should be utilized with the existing conduits and ladder racking. If ladder racking and/or conduits are missing those should be addressed per the standards document.

1.13. Provide all services, labor, materials, tools, testing, and equipment required for the complete and proper installation and termination of new horizontal "station" cabling as called for in the specifications and related drawings. Perform all horizontal cable installation in conformance with manufacturer's installation guidelines for warranties.

1.14 Security camera, audio/video or other systems that may use the network or terminate in a TR must adhere to the Standards for Cat 6A. Where there is a conflict District IT will resolve.

1.15 Prerequisites for network equipment installation:
 1) Final, permanent power is installed in TR
 2) Permanent cooling is provided in the room when the doors are closed per specifications.
 3) Sufficient lighting to work safely
 4) Lockable doors with at least one key provided to District/Campus IT with the understanding that the doors to the TR’s must be locked at end of day and District/Campus IT will be accessing them off construction hours at times and therefore needs their own access.

1.16 The wireless network is for convenience only. No systems shall be designed to operate over the wireless network.
2. Contact

As the engineering and design progresses, there may be questions regarding specific or unique infrastructure applications. No deviation from the guidelines listed in this document are allowed unless such deviation approval is documented by the contact designated for that site in Appendix III.

The term “CCCCD” is intended to include all facilities owned, rented or leased that comprise the Contra Costa Community College District, its District Office (DO), Main campuses (Contra Costa College, Diablo Valley College, and Los Medanos College), Satellite campuses (Brentwood and San Ramon), and their environs.

The terms “CCCCD Representative”, “CCCCD Designee”, “Site Representative” and “Site Designee” are intended to identify the CCCCD employee that is to be contacted for approval or clarification of items relating to the completion or acceptance of any contract work.

3. Standards and Methodologies to Follow

The following standards must be incorporated into the engineering, design, and installation of all infrastructure systems.

3.1. NEMA (National Electrical Manufacturers' Association)

3.2. ANSI (American National Standards Institute)

3.3. ASTM (American Society for Testing and Materials)

3.4. ICEA (Insulated Cable Engineers Association)

3.5. IEEE (Institute of Electrical and Electronic Engineers)

3.6. ANSI/TIA/EIA - Commercial Building Telecommunications Cabling Standard 568-B.1 & B.1-1, B.2 & B.2-2, B.3

3.7. ANSI/TIA/EIA - Customer-Owned Outside Plant Telecommunications Cabling Standard 758 & 758-1

3.8. ANSI/TIA/EIA - Commercial Building Standard for Telecommunications Pathways and Spaces 569-A and Addenda 1 through 7

3.9. ANSI/TIA/EIA - 606-A Administration Standard for the
Telecommunications Infrastructure of Commercial Buildings, 2002

3.10. Occupational Safety and Health Act Standards (OSHA)

3.11. NFPA 70 - National Electrical Code (NEC) (Unless superseded by local codes)

3.12. BICSI TDM/OSP Manuals (Latest version)

4. AutoCAD Symbols

See Appendix IV for AutoCAD symbols.

5. Telecommunication Room (TR) Design

5.1. Location

5.1.1. To minimize the horizontal cable lengths within a maximum of 85 M (279 feet), locate the TR on each floor as close as possible to the center of the area it is to serve.1

5.1.2. Ensure that the TRs are directly accessible from the hallway or other on area. TRs should have only one door and not be used as a passage way to other rooms.

5.1.3. It is recommended that all TRs be vertically aligned (stacked) above each other in multistory buildings.

5.1.4. TRs shall not be co-located with custodial, mechanical or other shared spaces unless the TR is a self contained, locking enclosure. Self contained, locking enclosures shall not be located in closets with running water.

5.2. Entry

5.2.1. Personnel entry to TRs shall be through a locked door at least 36 inches wide, 80 inches high. The door should open outward if this is acceptable to local building codes. If the door opens inward it must completely clear all racks or other obstacles.

1 For further information, see Attachment II, Division 27 section 271500 Horizontal Cabling.
5.2.2. TRs shall have access controlled utilizing an electronic Access Control System in keeping with District standards.

5.2.3. Doorways shall be properly sealed to avoid dust and pest from entering the room.

5.3. Telecommunication Room Sizing

5.3.1. The recommended minimum floor dimension for a TR shall be 100 square feet (i.e., 10’ x 10’). The minimum sizes shall be increased as building size, floor square footage served, or usage increases. The design professional shall consult with the designated contact (see Appendix III) if any questions arise concerning the proper sizing. The room must be at least 8’ on either side.

5.3.2. The TR should be square or rectangle to maximize the useable square footage. The MDF room will contain a four post cabinet as well as at least one 19 inch two post rack with cable management systems. This equipment list will be provided as Attachment V. This specification does not alleviate the design engineer’s responsibility to ensure compatibility of components.

5.3.3. The TR will be designed to ensure 36” of clearance front and back of equipment mounted in racks and cable management systems mounted on racks. This clearance must not be interrupted by conduit stubs or sleeves for safety reasons.

5.3.4. Any devices installed on the walls will be placed to ensure that they do not interfere with the installation/maintenance of equipment installed in cabinets/racks nor should they be within 12” of a 90% corner.

5.3.5. Special Exception: Smaller single story buildings - Less TR space is needed in smaller single story buildings with less than 8,000 square feet of assignable floor space. In most cases, there will be only one TR. The minimum TR sizing recommended for these applications is a shallow TR (3’ x 8.5’) or self-contained wall cabinet or enclosure.

5.4. Wall Linings
5.4.1. All walls should be finished, i.e., sheet-rock/painted, and lined with 3/4- inch thick Plywood backboard, 8 foot high by 4 foot wide and affixed in such a manner that it will support the weight of the cable, terminals, and other equipment. The plywood should extend around the entire room, corner to corner on every wall except for a one foot section on either side of the entrance door. Smooth side shall be installed out. The plywood backboard shall be void free. The plywood shall be fire retardant treated and painted with white paint, masking the plywood’s fire rated symbol from the paint such that the symbol is still visible after painting OR the plywood shall be treated with two coats of fire retardant paint materials.

5.5. Lighting

5.5.1. A light intensity level of 80 foot candles minimum should be provided measured at 3.3 feet from the finished floor on all sides of equipment racks.

5.6. Power

5.6.1. Provide at least two dedicated 120 VAC, 20 amp (non-switched) dual receptacles on each wall a minimum of four feet apart. These must be separate circuits per wall.

5.6.2. Provide one dedicated 120 VAC, 20 amp (non-switched) quad receptacle box and dedicated circuit above each two post relay rack plus a minimum of two 220 VAC, 30 amp twist lock receptacles and circuits at the top of each 4 post relay rack in each TR. The 220 receptacles shall be a L14-30R. These receptacles should be mounted above rear of the racks. Should multiple UPSes be planned for that TR then two 220 VAC, 30 twist lock L14-30R receptacles per UPS must be installed.

5.6.3. If the building is provided with an emergency generator system the electrical power, HVAC and lights in the TR shall be supplied from that power source.

5.7. Relay Racks

2 For further information, see Attachment II, Division 27 section 270526 Grounding and Bonding.

3 For further information, see Attachment II, Division 27 section 271100 Equipment Room Fittings
5.7.1. Racks are typically installed in TRs for the termination of horizontal data cabling, fiber optics and LAN, and other equipment. The size of a typical 19 inch Relay Rack is 7 feet high and has a 21 inch wide by 40 inch deep footprint when loaded with equipment. Ensure the required clearance around the racks provides for the equipment installed.

5.7.2. All racks must be attached to the floor using floor mounting anchors and the rack must have seismic bracing as required by local building codes.

5.7.3. Racks shall be bonded to each other and grounding will meet local code requirements and EIA/TIA standards.\(^4\)

5.7.4. Racks shall have vertical wire management for the left/right on front/back. Horizontal wire management will be mounted on the front.

5.7.5 Patch panels or fiber termination panels should only be installed in two post racks. Four post racks are reserved exclusively for items such as servers or UPSes that require four posts for installation.

5.7.6 Racks shall be placed side by side with no spaces between and no racks standing alone.

5.8. Cable Tray \(^5\)

5.8.1. Each TR shall have a Cable Tray for the routing of cable inside the rooms that is a minimum of 12 inches wide installed from corner to corner on every wall mounted 8 feet above finished floor. All trays must be bonded and grounded to the telecom ground bus bar for the room. Ladder racking shall be installed to carry cable from cable tray to racks.

Alternately if room is designed with cable sleeves in line with the sides of the relay racks, ladder rack over the top of the racks extending the length of the room can substitute for cable tray.

\(^4\) For further information, see Attachment II, Division 27 section 271116 Communications Cabinet & Racks.

\(^5\) For further information, see Attachment II, Division 27 section 270528-29 Hangers and Supports.
surrounding the room.

5.9. Ceilings

5.9.1. To permit maximum flexibility and accessibility, false ceilings (drop ceilings) are not permitted in TRs.

5.9.2. Over-head clearances shall be at least 8 feet (i.e., Cable tray mounted at 8 feet and HVAC duct work, sprinkler heads, etc mounted above 9 feet).

5.9.3. If the local fire codes allow, then no sprinkler heads/pipes should pass through or be installed in the TRs.

5.10. Dust Elimination

5.10.1. The floor shall be tiled with VCT or concrete that has been sealed with sealant.

5.11. Environmental Control

5.11.1. Provide heating, ventilation, and air conditioning that will maintain continuous and dedicated environmental control 24 hours per day, 365 days per year. Since the TRs house equipment, the normal temperature range should be 65 degrees to 75 degrees with 30% to 55% relative humidity. Switches, thermostats, or other devices shall be installed beside the door and not in/on walls containing telecommunications backboards. An environmental condition monitoring system will be provided.

6. Outside Plant Pathway Design

The outside plant (OSP) pathway system is the route by which telecommunication copper and fiber optic cabling travel between and enter into campus buildings.

OSP cabling shall terminate at the main telecommunications room / terminal room location of the building; usually on the ground floor or basement. The designated contact and appointed layout engineers shall be contacted to determine the best cable distribution method along the proposed cable route. Follow local codes and BICSI methodology for conduit placement.6
6.1. Underground Entrances

6.1.1. The recommended size for conduit used in an underground entrance is 4 inches in diameter. A spare conduit of equal size is required, thus giving a total of two 4-inch conduits as a minimum into any building under 10,000 square ft usable floor space. Conduit duct banks entering buildings of more than 10,000 square feet shall be sized with the assistance of the Designated contact (see Appendix III). Fill ratios shall not exceed 40% fill or exceed minimum bend radius.

6.1.2. Entrance conduit must not include more than two 90-degree bends without a pull box, hand-hole, or manhole. Bends must be sweeping bends with a radius not less than 10 times the inside diameter of the 4-inch conduit.

6.1.3. Conduits shall have a pull cord having a metallic member (tone tape) with a minimum test rating of 200 lbs pulling strength in each conduit.

6.2. Maintenance Holes

6.2.1. Any new maintenance hole number assignment shall be coordinated through the CCCCD.

6.2.2. New maintenance holes shall be 5’x6’x4’ deep with round lids with a diameter of 32-1/2 inches. Hand holes (small maintenance holes) are not acceptable unless approved by the CCCCD facilities dept and college IT designee (Appendix III). No square lids are permitted. Lids should have pull-slots for easy removal, traffic rated, and labeled “TELECOMMUNICATIONS OR TELEPHONE.” Grounding rods should be included in the design of all maintenance holes. The distance between maintenance holes shall be no more than 300 feet if a direct path is possible and no 90-degree bends are used.

6.2.3. All outside plant backbone cables shall be labeled at each end and in each hand hole/maintenance hole that they pass through. Labels shall be metal tags and waterproof so they do not decay when exposed to the elements. All labels shall be visible at point of access. All labels shall be according to TIA/EIA-606A standards and pre-approved by the...
IT designee (Appendix III).

7. Intrabuilding Backbone (Riser) Pathway Design

7.1. A vertical telecommunications conduit riser system shall be provided for bringing telecommunication cables from the main TR (BDF) to the various floors of the building.

7.2. As a design guideline, the vertical cable riser system should use a series of vertically aligned 4-inch sleeves in each floor beginning in the ceiling of the TR of the lowest floor and ending in the floor of the TR of the uppermost floor.

7.3. Riser Conduit Design Recommendations

7.3.1. The vertically aligned 4-inch sleeves should be located in the vertically aligned (stacked) TRs on each floor. Riser conduits or sleeves entering through the floor shall extend 3 inches above finished floor at the wall. Riser conduits or sleeves extending down from the ceiling shall extend to 9 feet above finished floor.

7.3.2. Sleeves should not be placed in the middle of the TR floor, but placed next to the wall that has plywood attached, preferably starting in the opposite left corner as seen when entering the door.

7.3.3. After the riser cable has been installed, all sleeves shall be fire stopped.\footnote{For further information, see Attachment II, Division 27 section 270528-41 Firestopping.}

8. Telecommunications Workstation Pathway Design

8.1. Horizontal Conduit Design Recommendations

Preferred Design Method - Conduit System

8.1.1. Each workstation voice/data outlet box shall be installed using a minimum of a 1-1/4" inch conduit. All conduits shall be home-run or routed directly to the main telecommunication room (TR) of the same floor. Conduit shall be EMT with screw or compression fittings. Flex conduit shall not be used in buildings for telecommunications cabling. Horizontal conduits designated
for outlets shall not feed floor to floor or be daisy chained from outlet to outlet. Standard office and classroom wall boxes are to be mounted at the same height at the electrical outlets in the room unless specified differently on the design plans.

8.1.2. The total individual conduit length including pull boxes used for telecommunications systems should not be longer than 85 M (279 feet).

8.1.3. Conduit runs should take the most direct path possible, following parallel lines of the building.

8.1.4. There should be no more than two 90-degree bends between pull boxes.

8.1.5. Provide a pull cord with a minimum test rating of 200 lbs pulling strength in each conduit. This cord is to remain once all work is completed.

8.1.6. Outlet boxes for standing kiosks, payphones or standing equipment shall be 4”W x 4”H x at least 2-1/4”D. These outlets shall conform to current ADA requirements.

8.1.7. Wireless Access Point and special application locations shall be 4”W x 4”H at least 2 1/4”D and mounted between 12” below a structural ceiling with a maximum height of 12’ from the finished floor. These locations would be determined based upon a spectrum/needs analysis. These boxes may be installed above a false ceiling.

8.1.8. All cables must be terminated in patch panels and face plates (jacks) on both ends.

Second Choice - Concealed Cable Trays - This choice is campus specific, you must obtain permission from the designated campus contact, see appendix III.

8.1.8. Concealed cable tray systems may be used, but are not recommended due to the potential for long term maintenance issues, increased costs of plenum rated materials, increased installation labor costs, wire damage and fire code violations. If
cable trays are located in a ceiling that is a return air plenum, the wire and cable used shall be specified as return air plenum wiring.

8.1.9. Supports shall be installed no more than 5 feet apart and within 2 feet of any fitting.

8.1.10. Cable tray shall be installed with 4-inch cable fence on both sides of the tray placed in main corridors throughout the floor allowing the shortest cabling distance from the tray to the WAO conduit. Basket type cable tray is an acceptable option.

8.1.11. Cable tray shall be readily accessible and placed in ceilings that utilize removable tile. If transition of hardcoat ceiling is required access hatches of a minimum of 24” x 24” should be installed every 15 feet or continuous 4 inch conduits should be used to span the inaccessible ceiling area.

8.1.12. Cable trays shall be installed in ceilings of hallways and shall avoid passing over office spaces, offices, classrooms, and other occupied spaces.

8.1.13. Cable trays shall be used in conjunction with 1-1/4” conduits from the outlet box and run to the ceiling raceway. Conduits should extend all of the way to the tray. Conduits should be properly cleaned, a bushing installed, and bonded to the cable tray.

8.1.14 J hooks may be permitted for limited applications where permitted by designated IT representative.

8.2. Special Use Considerations

Special use considerations - Some specific types of areas and uses differ from “office/conference room" type space. Therefore, these areas should be addressed in the list below:

8.2.1. Classrooms - The design professional should consult with the department and the CCCCD on a case by case basis to assure that any special needs are met.

8.2.2. Modular Office/Open Areas - These areas are unique and at times may require special modular telecommunications
hardware. Special conduit and termination boxes may also be required. Therefore, the design professional should consult with the department and the CCCCD on a case by case basis to assure that needs are met.

8.2.3. Fire/Intrusion Alarm Panels - A dedicated 1" homerun conduit shall be run from each fire and intrusion alarm panel to the TR horizontal cross-connect.

8.2.4. Elevators - A dedicated 1" homerun conduit shall be run from the TR to the elevator equipment room and connected to a 2"W x 3"H x 2-1/2"D single gang box adjacent to the elevator equipment. Elevator instruments are normally provided by the CCCCD. The design professional should consult with the CCCCD concerning the district instrument of choice.

8.2.5. Floor Outlets - Floor outlets shall be multi-service recessed floor boxes. Any box shall be approved in advance by the designated contact (see Appendix III).

8.2.6. ADA Requirements - Outlets in public locations that will require access by the handicapped (i.e., payphones, public phones, etc.) have special height and reach requirements for their installation in terms of the "Highest Operable Mechanism."

8.2.7 All cables must be terminated in patch panels and face plates (jacks) on both ends.

9. Outside Plant Cabling

9.1. Outside Plant (OSP) Copper Cable

9.1.1. Cable used for outside plant copper applications (between campus buildings) shall be rated for underground duct and direct buried applications or aerial and duct applications and shall meet REA (PE rated) or Bell specifications. Either filled OSP rated cable or air core pressurized OSP rated cable shall be used. Underground cable placed in the duct system is the OSP installation of choice. 9

9 For further information, see Attachment II, Division 27 section 271113 Entrance Protection.
9.1.2. Place outside plant copper cabling to allow for service loops in the cable as follows: one loop in each maintenance hole and 15 feet at each TR end.

9.2. Fiber Optic Cables

9.2.1. Fiber Optic cable used in OSP applications shall be loose buffer tube with jell fill or dry blocking. The minimum fiber cable configuration for backbone fiber cable is a Corning Loose buffered Hybrid 24 fiber optic cable with 18 single mode and 18 - 50/125 micron multimode fibers. Installed fiber shall meet all requirements of the ANSI/TIA/EIA 568A and 568B, Commercial Building Telecommunications Standard. Review design with the designated contact (see Appendix III) for strand count approval. At the LMC College Complex any fiber traveling from Sector to Sector must be considered OSP.

9.2.2. The use of Direct Buried or Aerial Cable must have prior approval of the designated contact (see Appendix III).

9.2.3. Place outside plant fiber cabling to allow for service loops in the cable as follows: one loop in each maintenance hole and 10 feet at each TR end.

10. Intrabuilding Backbone (Riser) Distribution Cabling

10.1. Copper Backbone Riser for Telephones

10.1.1. The copper riser shall be a Category 3 Unshielded Twisted Pair (UTP) Multi-pair, 24 AWG, solid copper cable formed into 25-pair binder groups.

10.1.2. The designated contact (see Appendix III) will work with design professionals to determine the riser quantity based on specific building needs.

10.2. Optic Fiber Backbone Riser

10.2.2. Optic Fiber Riser will be used for data networking and other high speed applications and shall consist of a minimum of six multimode (50/125µm) and minimum six Single-mode (8.3/125nm) optic fibers and be terminated on each floor as
design requires. The minimum standard Optic Fiber is a Corning riser or plenum rated tight buffer, 12 fiber cable per destination TR.

10.2.3. The designated contact (see Appendix III) will work with design professionals to determine the riser quantity based on specific building needs if it exceeds the minimum of 12 strands.

10.3. Documentation

10.3.1. All cables shall be marked. Both ends of the cable should be marked. Information will be physically marked by attaching a permanent cable label on both ends. See appendix III for campus standard.

10.3.2. As-built drawings shall be provided to the CCCCD Facilities dept as well as designated contact (see Appendix III).

11. Horizontal Distribution Cabling

All cables must be terminated in patch panels and face plates. No "home run" or male to female cables will be accepted ever.

11.1. The horizontal cabling is installed in a star topology with a dedicated cable to each jack. It extends from the work area outlet (WAO) to the telecommunications room (TR). Horizontal Cabling Systems shall meet requirements as specified in ANSI/TIA/EIA 568.

11.2. No telecommunications cable shall be run adjacent and parallel to power cabling. A minimum of 5” distance is required from any fluorescent lighting fixture or power line up to 2kVA and 24” from any power line over 5kVA. Similarly, cable should be routed and terminated as far as possible from sources of EMF, such as ballasts, generators, fans, motor control units, motors, etc.

11.3. All wiring shall be run concealed, inside wall cavities and in ceiling plenum. Any deviation from this needs to be discussed with college IT designee.

11.4. Horizontal cabling shall terminate in the IDF on the same floor as the WAO.

11.5. The placement of all WAOs is largely dependent upon the type and location of furniture (see college IT designee).
11.6. As part of the construction process for renovation, project plans shall include the removal of any abandoned cable(s) that shall be in the space. The 2005 California Electrical Code requires removal of accessible abandoned cable. All cabling reserved for future use, shall be identified as such and tagged.

11.7. For each project the designer shall prepare a "Jack Table" reflecting the connectivity planned for the project. This table will be maintained throughout the project and provided with Telecom drawings as updated. The designer is responsible for developing the Jack Table but the contractor is responsible for maintaining the table and providing the finished document.

11.8. Cabling shall be provided to support a minimum of those described as the types of WAO’s below. The horizontal cable extends from the station outlet (jack) to the horizontal termination block or patch panel in the TR and is part of a structured cabling system that must be warranted by the manufacturers to meet guaranteed performance while working with the selected horizontal cable height of WAO station jacks is campus specific, see appendix III. 10

11.8.1. For the purposes of this document a Work Area Outlet is a 4-port faceplate with three initial wired connections, 1 voice and 2 data unless otherwise specified.

11.8.2. Offices - A minimum of two telecommunications outlets shall be installed on opposing walls per single-person office. Each outlet location shall be equipped with one 4-port faceplate with three initial wired connections. In fixed configuration offices or if built-in furniture is to be constructed, it is preferred that the electrical and data outlets be located at +6” above the height of the desk surface or +36” A.F.F. If the office is large enough to support a visitor/conference table, an additional telecommunication outlet shall be installed, normally at +18” A.F.F. Electrical outlets shall be placed consistent with the data outlet height. Open office space modular locations shall be equipped with one 4-port faceplate with three initial wired connections.

11.8.3. Conference Rooms - Conference rooms shall require one

10 For further information, see Attachment II, Division 27 section 271500 Communications Horizontal Cabling.
communication outlet for every 10-feet of wall space on three sides of the room. The wall that is considered to be the “front” of the room shall have one communication outlet where the “whiteboard” is located. In addition, provisions shall be made to have a power and communication outlet flush mounted to the ceiling. Electrical outlets shall be placed consistent with the data outlet height.

11.8.3.1. Conference rooms shall require one floor mounted communication outlet box as well as an electrical outlet to allow access under the conference table.

11.8.3.2. For conference rooms scheduled for deployment of more extensive multiple media applications, refer to the Multi Media section of this standard.

11.8.4. Standard Instructional Classrooms - Instructional Classrooms that have a specific teaching wall orientation will be provided with a minimum one communication outlet on each of the three non-teaching walls. On the teaching wall, a communication outlet shall be located under or in close proximity to the classic or electronic whiteboard. If an instructor’s podium is provided, an outlet will be required at that location as well.

Emergency broadcast speakers are being installed as a standard in classrooms and other large public gathering spaces. Provide a WAO of two data wires shall be installed 12” below the ceiling but not to exceed 12’ above the finished floor. This shall take the form of a flush-mount outlet. The placement of this location will be coordinated with the campus in every instance. In addition, there is a single wire push button that must be mounted and wired to the speaker. Location and placement must be coordinated with College IT Rep.

11.8.4.1. AV systems for classrooms shall be installed in a 2-gang backless device ring (low voltage ring) with a 2-gang faceplate with a 2” center hole with a 2” conduit. The conduit shall be stubbed to the height of the backless device ring. The number and type of network cables included in each outlet will be defined by the instructional technology defined for each standard and smart classroom. Electrical outlets shall be placed consistent with the data outlet height.
11.8.4.2. At the designated main entrance to the classroom, a communication outlet for a wall mounted telephone will be provided. This outlet shall be positioned such that it does not interfere with light switches, whiteboards, projection screens, or access to the door. Wall mount telephones outlets are steel with a single port and a stud for phone mounting. The mounting height shall be in accordance with current ADA requirements.

11.8.4.3. Refer to the Multi Media section of this standard for treatment of classrooms designated as smart classroom being equipped with extended multimedia applications.

11.8.5. **Instructional Lab** – This lab is typically sized for a class of 40 student computers and an instructor’s computer. Lab design shall include ADA. The lab may also contain 3-4 printers, scanners and other network devices. Printers, scanners and other network devices are distributed around the room as space permits.

11.8.6. **Computer Lab for Student Self-Study** - In a computer lab where students come to work on assignments, there is typically no formal instruction. As such, the lab layout is oriented to provide the highest number of student stations, with little or no space reserved for an instructor’s workstation or whiteboard. The layout of this type of computer lab will vary with room dimensions and shape. In an arrangement of long tables, typically one computer workstation is provided for every 3.5 feet of tabletop. Outlets for these computer labs shall follow the general design guidelines. All data and power outlets on walls in self-study labs shall be at a height of +6" above the tabletop, typically +36" A.F.F. Outlets will be provisioned at intervals corresponding to the table spacing. All rooms, which support islands of tables or kiosks, will be configured with flush-mount floor boxes. Dual-purpose floor boxes (communication and power) are acceptable providing that there is adequate separation maintained so that all power outlets and all communication jacks can be used simultaneously without the cords interfering with each other’s access. The preferred design is a flush mount brass floor box with brass covers that can be
accessed when an outlet is used. All floor outlets will be provided in the floor slab. No cabling will extend across the floor. Floor mounted raceway (pancake raceway) is not acceptable. Sufficient floor boxes will be provided to support the required number of computers, plus supplemental printers, scanners and other network devices.

11.8.7. Raised Floor computer Labs - In new buildings with rooms that are designed for permanent computer labs, the computer lab design shall include a raised floor environment. For ground floor implementations, a depressed slab is preferred to allow for the raised floor environment without losing rooms space due to ramps or stairs. The raised floor environment will provide an accessible cabling system. The raised floor will provide a depth of 12 inches, with removable floor tiles to grant unhindered access to the floor space.

11.8.7.1. Within the raised floor, there will be a matrix of power and communication outlets that provides sufficient density to computer tables. Typically, this will be communication outlets each equipped with four data jacks, spaced every four feet, and equivalent power plugs and circuits to power computers and network devices plugged in to every network jack and powered on concurrently. The number and location of communication and power outlets will vary with room size and orientation. Each matrix will be custom designed with the designated contact.

11.8.7.2. Other low profile raised floor systems are permitted on a case-by-case basis.

11.8.7.3. Cables routing to the data outlets will be fully enclosed in a metallic raceway system that provides sufficient space so that the enclosed cabling does not exceed a 40% fill. The raceway system shall consolidate to suitable junction boxes that route conduits back to the serving Intermediate Distribution Facility. Sufficient conduits shall be provide as not to exceed a 40% fill.

11.8.7.4. Raceway system will be suspended from the floor and mounted so that the communication and power
outlets face horizontally. This will minimize the possibility of dust, particulate matter, and liquid falling into the network jacks. The removable floor tiles will be provided with notched access so that patch and power cords can be routed from the raised floor to the computer tables. Floor tiles will be re-locatable so that as room configurations change, cable notches can be positioned underneath tables and avoiding circulation paths.

11.8.8. **Work Rooms** - Faculty or Administrative workrooms will vary in size, configuration and function. These workrooms shall be equipped with shared departmental resources including facsimile machines, laser printers, desktop computers, and copiers. A variety of supplemental office devices, such as pencil sharpeners, laminators, electric staplers, etc. shall also be located in the workroom.

11.8.8.1. To facilitate the use of these devices, numerous communication and power outlets are needed. Workrooms are typically configured with counters and storage cupboards. Along counter tops where facsimile and printers shall be placed, communication outlets, with appropriate electrical outlets, will be distributed every six feet. Depending upon the size and configuration of the room, IT and the project's need will define the number of wired connections required. These will be placed at +6" above counter height. For self-standing copier machines, a communication outlet will be provided with appropriate dedicated electrical outlets.

11.8.8.2. At the entrance to the workroom, a wall-mount telephone outlet will be required. Wall mount telephones outlets are steel with a single port and a stud for phone mounting. This outlet will be situated to avoid space conflict with door-swings, light switches, cupboards, fire extinguishers, water coolers, panels and any other fixture or devices that could interfere with the accessibility of the telephone.

11.8.9. **Student Carrels** - Student carrels require a minimum of one faceplate with two wired connections per seat. The designer shall
provide power at each location.

11.8.10. **Wireless Access Points** - For support of wireless access points, a ceiling communications outlet shall be installed 12" below the ceiling but not to exceed 12" above the finished floor. This shall take the form of a flush-mount outlet. This outlet can be located above a false ceiling. Variance needs to be requested if mounting on ceiling or below 8’ on a wall. The location of the access point will be discreetly marked on the ceiling to enable technicians to find the access point without lifting tiles.

11.8.10.1. Pull two data wires to each WAP location. Mounting location is within 12-inches of the ceiling except where when noted a different location is required.

11.8.10.2. If a WAP is going to be installed on a projector mounting with a projector there is a minimum of three network cables required.

11.8.11. **Projectors** – Projectors require two data cables located at their ceiling mounts.

11.8.12. **Maintenance Spaces** - A Maintenance space is defined as any room that contains materials, supplies, equipment or tools used for the performance of maintaining systems on campus. These can include but shall not be limited to electrical rooms, security rooms, mechanical rooms, control rooms, boiler rooms, garages and larger janitorial closets.

11.8.12.1. In these spaces, the minimum communications outlet shall be an outlet for a wall-mount telephone. The estimated size of the wall-mount telephone is 10"H x 12"W, centered on the outlet. This outlet will be located on the same wall as the doorway to the space, with sufficient clearance so that the outlet (and potential equipment placement) is not obstructed by light switches, equipment or storage shelves. If the door swings into the room, the outlet will be located on the wall beside the door lock, i.e. NOT beside the door hinges, so that the door can swing open and damage the telephone.

11.8.12.2. If the Maintenance Space is a room with operating
mechanical and electrical equipment or will also be used as an office (or workroom) for maintenance personnel, the space will be equipped with additional communication outlet(s), located on the wall within three feet of a general purpose electrical outlet. One communications outlet will be provided for each desk area assigned to the maintenance space with the standard 4-port faceplate configuration with three wired connections. (Refer to the section on Offices)

11.8.12.3. If the Maintenance Space contains panels, control systems or other devices that need to remotely communicate status and operation via modem or network connection, each of these devices will be separately equipped with a dedicated data outlet cable. The definition of which devices/panels need cabling will be done in conjunction with engineering specialists for each device type. These can include HVAC monitors, elevators, facility panels, electronic locks, irrigation controllers, etc.

11.8.13. Storage Spaces - All storage areas that will be accessed by staff on a daily basis will be provided with an outlet for a wall-mount telephone. If the storage area will be provisioned with general-purpose electrical outlets, at least one communications outlet (pathway, back box and faceplate) will be provisioned on each wall where there is an electrical outlet. Frequently, storage areas are redefined in purpose and shall change into small meeting rooms, offices or other work areas requiring connectivity.

11.8.14. Roof Tops - Control equipment that is located on building rooftops frequently requires special provisioning of communications connectivity. This equipment can include HVAC monitors, cellular/wireless antennas, broadcasting equipment, telescopes, communication relays, photo voltaics, etc. Some of these systems shall be added after the building is built. It is more important to provide a clear pathway through which connections can be added later. Any control systems that require network connectivity need to be located within 275 feet of a technology space (MDF or IDF).

11.8.15. Security Devices - TCP/IP-enabled security devices, such as cameras, will be connected to the network. Some of these
devices shall be located on building exteriors, light poles or other internal and external structures. Cabling to these devices shall require copper or fiber cable, electrical, possibly with outside plant sheaths. Pathway and routing to these security devices will be designed on an individual basis. The district has a standard for electronic door access systems and these require network access. Please review the District's Security Standards document for any additional requirements.

11.8.16. **Specialty Locations** - The campus will have specialty locations that will require custom configuration at the time of building design. These locations include but are not limited to theatres, lecture halls (seating capacity > 200), auditoriums, athletic broadcasting venues and control rooms, scoreboards, electronic advertising boards, and others that cannot be envisioned at this time. At the time of design, the requirements for each of these locations will be individually determined with designated contact.

11.8.16.1. Floor duct systems (Walker-type) are permissible when routing horizontal cable to otherwise inaccessible locations in the center of slab floors. The sizing of these ducts is to be based upon 100% spare capacity allocated within the duct fill allowance (space for future additions). Floor duct and conduit system shall provide sufficient space so that the enclosed cabling does not exceed a 40% fill.

11.9. Each jack (whether for voice or data) shall be supported by a four-pair Category 6A cable.

11.10. WAO faceplates should be single gang with four jack openings (holes). Electrical white color. (Confirm WAO color with the campus). Each telecommunications outlet shall have a 1 1/4-inch conduit that extends from the back box to the TR or to the nearest cable tray.

11.11. Plenum rated cable must be used where required.

11.12. All four pairs must be terminated on both ends.

11.13. The maximum pull force for a four-pair horizontal UTP cable is 25 lbs.

11 For further information, see Attachment II, Division 27 section 270000 General.
11.14. Limit spans to 1.5 M (5 feet) or less in suspended cable runs.

11.15. Do not cinch cable bundles tightly. Velcro straps should be used on all data cable bundles and not cable ties to avoid over-tightening and deformation of the cable jacket. Avoid deforming the jacket.

11.16. Do not twist the cable during installation.

11.17. Ensure all horizontal cables meet bend radii of at least 4 times the outside diameter.

11.18. Remove only as much jacket as is needed for termination and trimming. Minimize the amount of untwisting of pairs when terminating the cable to devices. Untwisting of Category 6 cable shall not exceed 1/2 inch.

11.19. When cable runs are being installed, provide adequate service loops at ends to accommodate future cabling system changes. The recommended minimum amount of slack is 6 inches for UTP cables and 3 feet for fiber optic cables.

11.20. In the TR, install 6 feet of slack for all UTP and fiber optic cable. The slack loop is to be placed in the overhead ladder rack within the TR.

11.21. Include the slack in all length calculations to ensure that the total horizontal cable does not exceed 85 M (279ft).

11.22. Any surface mounted raceway must be mounted with hardware. Adhesive mounting is not acceptable.

11.23. Telecommunications outlet locations shall be coordinated with the furniture layout. In administrative WAO the typical outlet placement is +18” above the finished floor (AFF) and within three feet of a general-purpose, single-gang electrical outlet. Desks with modesty panels must accommodate data and electrical outlets at 18” above the finished floor. Panels should be 20” above finished floor at minimum.

11.24. In rooms with built-in counters, work surfaces or cupboards the outlets shall still be located at +18” AFF but the Architect will arrange for the drilling of routing holes in the work surface, installed with grommets, to facilitate the clean routing of cables. The grommet will be a minimum of two inches in diameter, made of plastic or rubber, oval or circular in shape, fitted to the hole drilled in the work surface with a replaceable cover that can hold the cabling after routing. Outlets will not be placed in cupboards.
or cabinets unless this specific purpose is desired. Check with designated contact.

12. Termination

12.1. OSP Copper Cable Termination for telephone

12.1.1. OSP copper cables will be terminated in the relay racks on 110 style blocks or Krone blocks depending on the campus.

12.2. OSP Fiber Optic Termination

12.2.1. Backbone fiber optic cables will be terminated in the TRs of the building. Fiber cables will be terminated with campus specified connectors. All connections will be fusion spliced.

12.3. Copper Riser Cable Termination for telephone

12.3.1. Copper riser cables will be terminated in the relay rack on 110 style blocks or Krone termination blocks depending on the campus. These terminal blocks shall be mounted on the plywood backboard.

12.4. Fiber Optic Riser Cable Termination

12.4.1. Fiber Optic cables for data networks and other applications will be routed to the equipment relay racks. Fibers will be terminated with campus specified 50 micron (multimode) and LC (single mode) connectors. Cabinets for fiber will be installed in the top most slots of the relay rack. Fiber patch panels will have integrated cable management in the front and cable guides in the rear. Sizing of these cabinets will be done on a case by case basis.

12.5. Work Area Outlet (WAO) Terminations

12.5.1. WAO Faceplate Selection - A standard flush, wall mounted telecommunications single gang outlet faceplate with cutouts for jack inserts is the outlet style of choice. Outlets may be mounted in a surface mounted box with associated wire mold if wall construction precludes internal wiring.

12.5.2. WAO Configuration - The outlet count shall match the numbers
specified for data cables in section 11.8 for snap in modular jack inserts. All unused ports shall be filled with blank inserts. All cables pulled must be terminated.

12.5.3. Jack Insert Termination - The jack insert shall be an 8-position, RJ45 jack insert rated for Category 6A. The 4-pair, 100 ohm UTP station cable for data shall be used to terminate only one jack and all four pairs shall be terminated. Remove only as much jacket as is required for termination and trimming and minimize untwisting of the pairs to less than 1/2 inch. The manufacturer's guidelines for termination shall be followed at all times. The data jack shall be terminated following T568 pin / pair assignments. (See Appendix III to determine if the 568A or 568B wiring termination is used.)

12.5.4. The Category 6A jack is part of a structured cabling system that must be warranted by the manufacturers to meet guaranteed performance while working with the selected horizontal cable and patch cords.

12.5.5. Wall phones and pay phone station terminations - Instruments requiring mounting on walls will use a RJ45 wall jack capable of supporting the instrument. Pay phones do not require a jack but should have station wire coiled in the service box.

12.5.6. ADA Requirements - Outlets in public locations that will require access by the handicapped (i.e., payphones, public phones, etc.) have special height requirements for their installation. Follow local code requirements for those installations to confirm ADA compliance.

13. Cross-connections 12

13.1. Voice Circuit Cross Connection

13.1.1. Cross connection between terminals for voice circuits will use one pair, twisted, 24 AWG jumper wire.

13.1.2. The color of this wire will be White/Blue. No more than one wire shall be punched down (terminated) on a single terminal.

For further information, see Attachment II, Division 27 section 271600 Communications Cords and Devices.
13.1.3. Jumpers shall utilize wire management ("D" Rings) and shall not be run diagonally.

13.2. Data Circuits Cross-Connects

13.2.1. Patch Cords for patch panels - Data circuits are terminated in the data patch panels in the TR racks.

13.2.2. A Category 6A pre-connectorized RG45 patch cable shall be used to connect the horizontal cross-connect jack to the data switch or other equipment. Refer to appendix III for type of patch cable needed.

13.2.3. The data patch cable shall be limited to the needed length for the cross-connect.

13.2.4. Cable Management devices shall be used for routing of patch cables.

13.2.5. Patch Cables in the horizontal cross-connect shall be minimized and shall not exceed 6 meters (20 feet). The horizontal cross length shall be included in the maximum combined horizontal patch cable and equipment cable length in the telecommunications room of 7 meter (23 feet).

13.2.6. Cross connection of horizontal cabling shall meet all recommendations of ANSI/TIA/EIA-568A and 568B. Refer to appendix III for which pair order is used at the campus.

13.2.7. Data patch cords are part of a structured cabling system that must be warranted by the manufacturers to meet guaranteed performance while working with the selected horizontal cable and termination hardware.

13.2.8. For new installations, patch cords must be provided in various lengths and quantities sufficient to patch at least 75% of all cables terminated in each TR.

13.3. Fiber Optic Jumpers

13 For further information, see Attachment II, Division 27 section 271119 Blocks and Patch Panels.
13.3.1. All fiber optic cross-connect jumpers shall be single fiber Corning fiber Jumpers.

13.3.2. Fiber Jumpers shall meet FDDI, ANSI/TIA/EIA 568A and 568B standards.

13.3.3. All jumpers shall be pre-connectorized.

13.3.4. Multimode fiber riser jumpers shall be 50/125mm, with campus specified connectors and shall be sized in length for the application. Multimode jumpers shall be orange in color.

13.3.5. Single mode 8.3/125mm should be with campus specified connectors and sized in length for the application. Single mode jumpers shall be yellow in color.

14. Labeling

All telecommunications infrastructure and equipment components shall be Labeled according to TIA/EIA-606A standards.

14.1. Backbone Copper Riser Terminal Labeling

14.1.1. Backbone copper riser terminal blocks shall be labeled with the cable number and the pair counts indicated on the designation strip.

14.2. Fiber Optic Labeling

14.2.1. Each strand of fiber optic cabling will be labeled on the patch panels at both ends with the local termination point and the destination termination point.

14.2.2. Each fiber cable, before breakout, shall be labeled at both ends with the local termination point and the destination termination point.

14.3. Horizontal Cable Termination

14.3.1. Room number of the destination work area, Station number, Jack Number (Prefixed with type “V” for voice, “D” for data) Voice and data jacks terminate in different patch panels; all voice together and all data together.
14.4. Horizontal Outlet Labeling
Labeling must be done in ascending campus room number, not drawing or architect room numbers. No tables or translations will be accepted.

14.4.1. TR Room number (where cable terminates), Room number of the work area, Station Number, Jack Number (Prefixed with type "V" for voice, "D" for data) (Example: 109 122-1-V1 109 is the TR, 122 is the room where the jack is located, 1 is the station location, V1 is the 1st voice jack in that particular wall plate)

14.4.2. All labeling shall be done with typed inserts, typed on adhesive labels, or pre-stamped jack usage indicators for patch panels. For cabling the labeling shall be printed heat shrink labels or typed adhesive labels specifically designed for cabling. Handwritten labels are not allowed.

14.4.3. Post one full size plot (42x30) of as-built drawings, specifically the floor plans, and (as applicable) reflected ceiling plans, within IDFs such that show the IDF’s serving area. Coordinate location of posting with Owner.

14.4.4. Submit a “cable ID-to-Office number key” as an electronic file in an MS-Excel spreadsheet file format containing a list of every cable identifier associated with the final office number. This should be the Jack Table referenced in 11.7.

15. Telecommunications Grounding and Bonding

Statement: The information provided in this document for the design of the Telecommunications grounding and bonding system does not replace national, state, local, or other applicable codes, laws, or regulations.14

15.1. All cable trays and conduits shall be bonded.

15.2. Telecommunications equipment shall be bonded per the manufacture's guidelines.

15.3. TR racks shall be bonded.

14 For further information, see Attachment II, Division 27 section 270526 Grounding and Bonding.
16. Inspections, Testing, and Acceptance

16.1. Frequent inspections should be conducted during the installation of the new services and wiring. These inspections should be conducted jointly by the contractor and representatives from the CCCCD IT & Facilities Departments.

16.2. Test the structured cabling system to the manufacturer’s standards so that a complete structured cabling system warranty will be delivered to CCCCD.

16.3. Acceptance testing of all installed and terminated structured cabling systems, including UTP and fiber optic cable, shall be completed and both a hard copy and electronic copy.

16.4. Horizontal data structured cabling permanent links shall be tested for acceptance.

16.5. All required test results shall be delivered to the CCCCD Facilities and designated IT representative. Failure to do so will place the project in an incomplete status and shall stop final payment due installer.

16.6. At the completion of each installation “As Built” prints and other supporting documentation shall be provided by those performing work specified according to 606A standards. A complete set of 100% prints and documentation shall be provided to the CCCCD Facilities for review and will be maintained on file.
Attachment I

Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA</td>
<td>Americans with Disabilities Act</td>
</tr>
<tr>
<td>Aerial Service</td>
<td>Telecommunications Cable installed on supporting structures such as poles, sides or buildings, and other structures.</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge</td>
</tr>
<tr>
<td>Backboard</td>
<td>Plywood covered wall in telecommunications room or in terminal boxes used to mount termination devices, hardware and equipment.</td>
</tr>
<tr>
<td>Backbone</td>
<td>Cabling and pathway used to connect the telecommunications rooms, cross-connects, entrance facilities and equipment rooms.</td>
</tr>
<tr>
<td>BDF</td>
<td>Building Distribution Frame: The term that designates a TR within a building as the primary TR for the building. The BDF would be fed with outside plant cabling.</td>
</tr>
<tr>
<td>BICSI</td>
<td>The internationally recognized organization that developed methodology manuals describing how telecommunications infrastructure should be designed and installed. Building Industry Consulting Service International</td>
</tr>
<tr>
<td>Bridge Tap</td>
<td>The connection of two circuits in parallel to each other or a cable pair continued beyond the point at which the pair is connected to an instrument.</td>
</tr>
<tr>
<td>Buried Service</td>
<td>A cable installed under the surface of the ground (not in conduit) in such a manner that it cannot be removed without disturbing the soil. Also called direct buried cable, trenched, or bored.</td>
</tr>
<tr>
<td>Busbar</td>
<td>A copper bar used as a common point for connection of the building electrical service ground to all telecommunications hardware and equipment in a room or terminal box.</td>
</tr>
<tr>
<td>Cable Bend Radius</td>
<td>The radius that a cable can bend before risk of damage or decrease in transmission performance.</td>
</tr>
<tr>
<td>CATV</td>
<td>Community Antenna Television (Cable TV)</td>
</tr>
<tr>
<td>Coax</td>
<td>Coaxial Cable. A central conductor surrounded by dielectric and a tubular outer conductor.</td>
</tr>
<tr>
<td>Conduit Ductbank</td>
<td>An arrangement of conduit ducts in tiers, encased in concrete used for...</td>
</tr>
</tbody>
</table>
installing telecommunications cables between buildings.

Cross Connection A connection made between cables, subsystems and equipment by the use of patch cables, or jumper wires run between the terminating devices.

D Ring Cable Management Device attached to the backboard.

dB Decibel

Demarcation point A point of interface where two services are connected. An example at CCCCD would be the point at which the local dial tone provider terminates their cables in the Main Telecommunications Room for cross-connection to the Intrabuilding cabling.

EIA Electronics Industries Association.

EMI Electromagnetic Interference. An unacceptable or undesired response, malfunction, degradation, or interruption to the intended operation of electronic equipment caused by the coupling of electrical or magnetic fields.

EMT Electrical Metallic Tubing

Encased Conduit Conduit contained inside poured concrete.

Exposed Cable Any cable that is located so that it is subject to lightning, power induction, or differences in ground potentials.

Outlet Faceplate A Work Area Outlet (WAO), a plate or cover which holds multiple communications jacks, mounted on a surface, and covering the electrical box and communications cables in the wall.

FCC Federal Communications Commission

FDDI Fiber Distribution Data Interface

Foot-Candle A unit of luminance on a surface that is everywhere one foot from a uniform point source of light of one candle and equal to one lumen per square foot.

Gas Tube Protector An over voltage protector with metallic electrodes in a gas atmosphere contained in a glass or ceramic envelope.

Horizontal Channel The horizontal cabling which includes all elements of the horizontal cabling Link, plus the equipment cords in the telecommunications room and the work area. Contains all elements needed to support telecommunications applications over the horizontal cabling.

Horizontal Link The horizontal cabling which includes all horizontal components except for equipment cords in the telecommunications room and at the work...
IEEE Institute of Electrical and Electronics Engineers, Inc.

IDF Intermediate Distribution Frame: The term that designates a TR within a building as a secondary TR, not the primary TR (BDF) for the building. The IDF would be fed with riser cable from the BDF, never outside plant cabling.

Jack The horizontal cable end point connection terminated inside a Work Area Outlet.

LAN Local Area Network. A geographically limited data network used for the local transport of voice, data, and video.

Loose Buffer In a fiber optic communication cable, one type of component used to encapsulate one or more optical fibers for the purpose of providing such functions as mechanical isolation, protection from physical damage and fiber identification. The buffer may take the form of a miniature conduit, contained within the cable and called a loose buffer, or loose buffer tube, in which one or more fibers may be enclosed, often with a lubricating gel.

Maintenance Loop An additional length of cable on the end of a installed cable that allows for later use if any of the cable must be shortened or the termination devices moved.

Maintenance hole (MH) A hole through which a person may gain access into a underground vault or structure.

Marker tape A plastic tape placed in the ground to identify buried cable location if dug up.

Media The physical path for telecommunications services. (i.e., copper cable, fiber optic cable, coaxial cable, radio, etc.)

MHz Megahertz. One million hertz or one million cycles per second.

Modular Jack insert The modular communications jack that snaps into a faceplate.

Multimode Fiber An optical fiber that supports the propagation of more than one bound mode. A multimode optical fiber may be either a graded-index (GI) fiber or a step-index (SI) fiber.

NEC National Electrical Code.

OFNP Optic Fiber Non-conductive Plenum.
Contra Costa Community College District
Infrastructure Standard

OSHA
Occupational Safety and Health Administration.

OSP
Outside Plant: Telecommunications facilities located outside of the building. Either underground, direct buried or aerial.

CCCD
Contra Costa Community College District

Outlet
A faceplate with modular jacks located at the workstation (see Work Area Outlet).

Pathway
Structures that conceal, protect, and support telecommunications cables. (i.e. Conduit, cable rack, trays, J-hooks, underfloor ducts, cellular ducts, trench ducts, Raised access floor, etc.)

PE Cable
Filled Cable for use in OSP applications. Designated by the Rural Utilities Service.

Plenum rated
Cable used in a designated area, closed or open, used for the transport of environmental air.

Pull Box
A device to access a raceway, used for access to allow for pulling cable.

PVC
Polyvinyl Chloride

Raceway
An enclosed channel or pathway designed to hold cables.

Rack
A vertical frame upon which one or more units of equipment and patch panels are mounted.

RFI
Radio Frequency Interference. Any Radio Frequency disturbance that interrupts, obstructs, or otherwise degrades or limits the effective performance of electronics/electrical equipment.

Riser Cable
Intrabuilding Backbone Cable that runs vertically to the IDF in a Telecommunications Room (TR).

Single Mode Fiber
A optical fiber in which the signal travels in one mode. The fiber has a small core diameter, typically 8.3 um.

Sleeve
A Conduit placed through a wall or floor to allow the passage of telecommunications cables.

Terminal Block
An insulating base with binding posts used to terminate telecommunications cables and cross connect between cables.

Terminal Box
A metal box with a hinged lockable door used for installing terminal blocks, terminating cables and cross connecting. The box provides protection against dust, mechanical damage, weather and vandalism.

TIA
Telecommunications Industry Association
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tight Buffer</td>
<td>A tight buffer consists of a polymer coating in intimate contact with the</td>
</tr>
<tr>
<td></td>
<td>primary coating applied to the fiber during manufacture. The protective</td>
</tr>
<tr>
<td></td>
<td>thermoplastic coating is normally a diameter of 900 microns.</td>
</tr>
<tr>
<td>TR</td>
<td>Telecommunications Room: The room (or space) that houses voice, data, and</td>
</tr>
<tr>
<td></td>
<td>video cross-connects and/or equipment. Usually located within 90 meters</td>
</tr>
<tr>
<td></td>
<td>(270 feet) from the Work Area Outlet (WAO) so that horizontal cable can be</td>
</tr>
<tr>
<td></td>
<td>pulled from the TR to the WAO.</td>
</tr>
<tr>
<td>Underground Cable</td>
<td>A telecommunications cable installed in a underground duct system which</td>
</tr>
<tr>
<td></td>
<td>separates the cable from direct contact with the soil.</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptible Power Supply</td>
</tr>
<tr>
<td>UTP</td>
<td>Unshielded Twisted Pair. A transmission line composed of a twisted 2-wire</td>
</tr>
<tr>
<td></td>
<td>metallic transmission line surrounded by a sheath of non-conductive material.</td>
</tr>
<tr>
<td>Wire mold</td>
<td>A surface mounted enclosed channel designed to hold cables.</td>
</tr>
<tr>
<td>WAO</td>
<td>Work Area Outlet, the faceplate that houses the horizontal cable and jacks</td>
</tr>
<tr>
<td></td>
<td>at the terminating end of a horizontal cable.</td>
</tr>
<tr>
<td>Work Area Outlet</td>
<td>See WAO</td>
</tr>
<tr>
<td>Workstation</td>
<td>An individual user interface where the desk, computer, communications, and</td>
</tr>
<tr>
<td></td>
<td>other equipment is located and connected to the telecommunications outlet.</td>
</tr>
</tbody>
</table>
Division 27 Specification Section Highlights

270000 General

- Contractor shall furnish and install a Structured Cabling System including, but not necessarily limited to, copper, fiber optic, and coaxial cabling for the voice, data, and wireless systems.

- Contractor shall provide and install all materials and hardware necessary for complete build-out and provisioning of the telecommunication rooms referenced in the drawing set accompanying these specifications.

- Provide a certified Structured Cabling System with a 25-year CAT 6 channel performance compliance warranty.

- The Contractor shall be a Certified Installation Company of the Structured Cabling System manufacturer.

270526 Grounding and Bonding

- Provide all services, labor, materials, tools, and equipment required for the complete and proper installation of telecommunications grounding and bonding for the Structured Cabling System.

- Each telecommunication room (TR), whether a BDF or IDF in a building, shall have a Telecommunications Grounding Buss Bar (TGB) properly connected per ANSI/TIA/EIA-607.

- Each TR in a building designated as a building entrance point (BDF) shall be the location of the Telecommunication Main Grounding Buss Bar (TMGB) properly connected per ANSI/TIA/EIA-607.

- All bonding conductors shall be insulated copper. The exception is use of flat, braided, aluminum ground straps utilized for bonding sections of aluminum cable tray.

- Unless otherwise specified, size the conductors as required by NEC.

- Ground communications systems and equipment as required by manufacturer, code, utility, local ordinances, and requirements.

- Label all telecommunications bonding conductors as close as possible to their termination point.

- Confirm that the Electrical Contractor bonded the TMGB to the service equipment (power) ground, typically located in the electrical entrance facility, utilizing the most direct route possible to minimize conductor length.

270528-29 Hangers and Supports

- Provide all services, labor, materials, tools, and equipment required for the complete and proper installation of equipment supports, cable supports, and fastening hardware as called for in these specifications and related drawings.

- Provide all required of the following
 1 J-bolt kits
Contra Costa Community College District
Infrastructure Standard

2 Manufacturer's recommended support devices
3 Clamps
4 Mounting straps
5 Clips
6 Couplings
7 Hangers
8 Other miscellaneous hardware assemblies

- All hardware shall be corrosion resistant.
- For technology pathway systems such as ladder rack and cable tray, provide all associated components from a single manufacturer.
- Use toggle bolts or hollow wall fasteners in hollow masonry, plaster, or gypsum board partitions and walls; expansion anchors or preset inserts in solid masonry walls; self-drilling anchors or expansion anchors on concrete surfaces; sheet metal screws in sheet metal studs; and wood screws in wood construction.
- Do not fasten supports to piping, ductwork, mechanical equipment, lay-in ceiling support wires, or conduits.
- Do not drill structural steel and concrete members.
- In areas where cable tray or conduit is not provided, support the cable with cable hangers. Cable hanger-to-cable hanger center-to-center separation shall be a minimum of five feet. Cable bundles shall be at all times at least six inches above any lay-in ceiling tiles. Cable support hangers shall be placed in a straight line as much as is possible.

270528-41 Firestopping

- Provide all services, labor, materials, tools, and equipment required for the complete and proper installation of firestopping for communications systems as called for in the specifications and related drawings.
- Provide penetrations through fire-rated walls and partitions and firestopping of the penetrating items.
- A through-penetration is created when a cable, conduit, or sleeve passes through an opening in a fire-rated wall or floor. The opening offers a path for fire and smoke to spread. A firestop is a special seal designed and tested to restore the fire integrity of the barrier.
- Design requirements: Provide firestopping systems that are produced and installed to resist the spread of fire and the passage of smoke and other gases.
- Deliver firestopping products to the project site in original, unopened containers or packages with intact and legible manufacturers' labels identifying project and manufacturer; date of manufacture; lot number; shelf life, if applicable; qualified testing and inspecting agency's classification marking applicable to the project; curing time; and mixing instructions for multi-component materials.
- When the firestop system has been installed, place a label next to the system.

271100 Equipment Room Fittings
Contra Costa Community College District
Infrastructure Standard

- Provide all services, labor, materials, tools, and equipment required for the complete and proper installation of communication equipment room fittings as called for in the specifications and related drawings.

- Design Requirements: Provide cable management and ladder rack cabling support in each telecommunication room location to transport all communication cabling within the room to the termination racks.

- Manufacturers: Chatsworth Products, Inc. (CPI), or approved equal.

- Provide all ladder rack and associated components from a single manufacturer.

- Bond all ladder rack within an equipment room or telecommunication room to the telecommunications grounding buss bar.

271113 Entrance Protection

- Provide all services, labor, materials, tools, and equipment required for the complete and proper installation of outside plant cable (OSP) entrance protection and termination for copper cabling as called for in the specifications and related drawings.

- Design Requirements: All pairs of both ends of new OSP cable shall be protected and shields shall be grounded at both ends.

- Specify protectors with 300V nominal clamping voltage and with 350 mA sneak current protection.

- All pairs of the OSP multi-pair copper cable entering a building shall be spliced or otherwise connected to a fusible-link cable at least two gauges finer than the entrance cable.

- Install a Building Entrance Terminal protector unit for every 100 pairs of OSP entrance cable or entrance tie cable as specified in the drawings.

- Bond all protectors in each BET together using 1/0 AWG (6 AWG allowed) ground wire, in daisy chain style. Connect a segment of ground wire from the top unit to the Telecommunication Grounding Buss Bar in the telecommunications room. Install 100 5-pin protector units for each protector terminal.

- Splice entrance cable or entrance tie cable to 26 AWG protector terminal fuse cable pigtails. Secure the splice case vertically on the TR wall as shown on the contract drawings.

- Label Building Entrance Terminals according standards.

271116 Communications Cabinets & Racks

- Provide all services, labor, materials, tools, and equipment required for the complete and proper installation of communications cabinets, racks, frames and enclosures as called for in the specifications and related drawings.

- Design Requirements: Provide communication racks in BDF or IDF locations to terminate all communication cabling and house networking electronics.

- Manufacturers: Chatsworth Products, Inc. (CPI), Universal Self-Support Rack or approved equal.
Contra Costa Community College District
Infrastructure Standard

- All racks must be attached to the floor using floor mounting anchors recommended by manufacturer’s installation instructions as appropriate for floor type. The rack must have seismic bracing as required by local building codes.
- Racks shall be bonded to each other and the TGB using hardware approved and/or provided by the equipment rack manufacturer. The bonding will meet local code requirements.
- Ladder rack may be attached to the top of the rack to deliver cables to the rack. Use appropriate hardware from the ladder rack manufacturer.

271119 Blocks and Patch Panels

- Provide all services, labor, materials, tools, and equipment required for the complete and proper installation of communication blocks and patch panels as called for in the specifications and related drawings.
- Building Entrance Terminals: Provide all required 110 style protection building entrance terminals (BET) with 5-pin protectors included.
- Multipair Copper Cable Termination Blocks: Provide all required 110 style field assembly kits with 5-pair terminations and labeling strips.
- Provide all required CAT 6 patch panels. Patch panels are to be 48-port panels unless otherwise specified in the drawings.
- Provide all required cable system optical fiber connectors. (Corning preferred)
- Horizontal Cable Terminations: Install one (1) CAT 6 / 48-port patch panel for every 48 horizontal cables.
- Fiber Cable Termination: Terminate fiber strands of riser links or OSP links per ANSI/TIA/EIA-568-B.1, sub-clause 10.3.2 inclusive. This means the Contractor shall implement a termination system such as 568SC A-B : B-A orientation or accomplish the same polarity crossing by using reverse pair positioning.

271300 Communications Backbone Cabling

- Provide all services labor, materials, tools, and equipment required for the complete and proper installation, splicing, and termination of new backbone cabling as called for in the specifications and related drawings.
- Inside Copper Backbone Cabling: Riser Rated Non-Plenum (CMR) Category 3 UTP, 24 AWG. Riser Rated Plenum (CMP) Category 3 UTP, 24 AWG.
- Outside Plant (OSP) Copper Backbone Cabling: Filled or pressurized Air Core, 24 AWG.
- Outside Plant Fiber Optic Cable: Single-mode 8.3/125 Outside Plant Fiber Optic Cable. Multimode Laser Optimized 50/125 Outside Plant Fiber Optic Cable.
Contra Costa Community College District
Infrastructure Standard

- Ensure that maximum pulling tensions of specified cables are not exceeded and cable bends maintain the proper radius during placement.
- Neatly and permanently label all backbone cables with the cable number at both ends and at all splice locations.
- Firestop all sleeves and conduit openings after the cable installation is complete.
- Test and document the final backbone cable installation, including cable footages, on the as-built drawings.

271500 Communications Horizontal Cabling

- Provide all services, labor, materials, tools, and equipment required for the complete and proper installation and termination of new horizontal "station" cabling as called for in the specifications and related drawings.
- The horizontal portion of the telecommunications cabling system extends from the work area outlet (WAO) to the termination in the Telecommunications Room (TR) IDF or BDF.
- Work Area Faceplates: Double gang with four jack openings (holes). Electrical white color. (Confirm WAO color with the campus)
- Copper Modular Jacks: Category 6, 8-position, 8-conductor jack. Campus Specific Pair Order See Appendix III
- Perform all horizontal cable installation in conformance with manufacturer’s installation guidelines.
- Horizontal telecommunications cabling shall be placed in dedicated pathways separate from backbone and other cabling.
- The total length of any horizontal station cable from the jack location to the termination block shall not exceed 85 meters.
- Neatly and permanently label all horizontal cables with the cable number at both ends.
- Firestop all sleeves and conduit openings after the cable installation is complete.
- Test and document final horizontal cable installations including outlet numbering on as-built drawings.

271600 Communications Cords and Devices

- Provide all cords, cross-connect wire, devices, and adapters required to connect the new OSP, riser, and horizontal "station" cabling as called for in the specifications and related drawings.
- Contractor is to provide all necessary communications jumper cabling, copper patch cords, and fiber optic patch cords to connect the communications system end-to-end.
- Supply enough patch cords to connect 75% of the available copper patch panel ports for each
and every telecommunication room.

- Supply enough patch cords to connect 75% of the available fiber optic patch panel ports for each and every telecommunication room.
The purpose of this appendix is to outline the requirements of each site for those specific areas of the standard where campuses must vary from each other.

The District has selected Category 6A as our cable standard for new construction and where complete building remodels make it possible to scale up the conduit and ladder racking. Where Category 5 or 5E is being replaced Category 6A should be utilized with the existing conduits and ladder racking. If ladder racking and/or conduits are missing those should be addressed per the standards document.

Contra Costa College
Contact : Technology Systems Manager
 James Eyestone
 Jeyestone@contracosta.edu
 (510)215-3866

Cable Standard - Category 6A preferably Belkin

Pair Order specification: 568A

Color Coding standard for patch cables and jacks:
 Voice - green cable and jacks
 Data in Administrative Areas and Offices - blue cable and jacks
 Data in Instructional Areas - yellow cable and jacks

Los Medanos College and Brentwood Center
Contact : Technology Systems Manager
 Michael Becker
 mbecker@losmedanos.edu
 (925)473-7362

Cable Standard - Category 6 Krone only for additions to existing TR’s where Krone is in use. Category 6A for all new construction.
For remodel additions or replacements match the existing products.

Pair Order specification: 568A

Color Coding standard for patch cables and jacks:
 Voice - white cable and jacks
 Data - blue cable and jacks
 Security – black cable and jacks
Contra Costa Community College District
Infrastructure Standard

Wireless Access Points - green cable and jacks

Diablo Valley College and San Ramon Valley Center
Contact: Technology Systems Manager
Percy Roper
proper@dvc.edu
(925)969-2270

Cable Standard - Category 6A
Label Standard – TIA/EIA-606A
Pair Order specification: 568B

Color Coding standard for patch cables and jacks:
Voice - white cable and jacks
Data - blue cable and jacks
Wireless Access Points - green cable and jacks
Security, video, EMS - yellow cable and jacks

District Office
Contact: Network Technology Manager
Katherine Ogden
kogden@4cd.edu
(925)229-6890

Cable Standard - Category 6A
Pair Order specification: 568A

Color Coding standard for patch cables and jacks:
Voice - white cable and jacks
Data - blue cable and jacks
Wireless Access Points - green cable and jacks
Typical Symbols:

- ▲ Single-gang plate with 1 CATV coaxial cable connector.
- ▲ Single-gang plate with 2 UTP cables mounted high on wall to facilitate placement of a PDA device such as wireless access point, camera, or projector.
- ▲ Double-gang plate with 3 UTP cables.
- ▲ Wall phone jack single-gang plate with one UTP cable and phone configured with telephone instruments, mounting posts.
- ▲ Double-gang plate with 4 UTP cables.
- ▲ Double-gang plate with 2 UTP cables.
Network Switches
Exclusively HP ProCurve 5412, 5406 or 3500 switches sized appropriately for the TR or replacement model

Wireless Access Points
Ruckus 710 Access points sized appropriately for the space or replacement model

Uninterruptible Power Supplies
Liebert GXT4 model UPS’s sized appropriately for expected load or replacement model

Four Post Cabinets
Chatsworth

Two Post Racks
Chatsworth

Cable Management Systems

Category 6A Cable